Abstract

锶元素在大自然中以化合物的形式广泛存在,是生物体内的一种必需微量元素,对骨代谢具有重要的调节作用。锶元素在周期表中位于第4周期、第ⅡA族,与钙同族,其化学结构和极性与钙十分相似。锶能够通过钙离子受体介导一系列成骨相关通路诱导间充质干细胞向成骨细胞分化,促进成骨细胞的成骨作用,同时抑制破骨细胞活性,减少骨吸收从而促进成骨。近年来学界对锶成骨作用机制广泛研究,本文旨在对锶成骨信号机制的研究进行总结,为其临床应用提供理论基础。

Keywords: 锶, 骨代谢, 作用机制

Abstract

Strontium (Sr) is an essential trace element and widely exists in nature. It plays an important role in the in vivo regulation of bone metabolism. Sr locates below Fe in the periodic table, and its chemical structure and polarity are similar to those of Ca. It can induce bone mesenchymal stem cells to differentiate into osteoblasts by inhibiting the activity of osteoclasts and reducing bone resorption. It promotes bone formation through a series of related pathways. The mechanism of Sr regulation of bone metabolism has been extensively researched in recent years. The current study aims to investigate the mechanism of Sr and provide a theoretical basis for its clinical application.

Keywords: strontium, bone metabolism, mechanism of action

锶是一种亲骨性元素,能通过钙离子受体介导一系列成骨相关通路,诱导骨基质的形成,增加骨基质含量,同时抑制破骨细胞的破骨吸收,减少骨吸收。近年来对锶成骨机制及效果的研究在不断深入,本文将对锶相关成骨相关研究进行综述。

1. 锶的性质及其代谢特点

锶元素在周期表中位于第4周期、第ⅡA族,银白色碱土金属,自然界以化合物形式存在。锶在人体内以Sr2+存在,含量约320 g,99%存在人体硬组织骨骼在和牙齿中,剩余0.7%存在于细胞外液。锶主要经胃肠道吸收,少部分经皮肤、肺吸收;大部分由肾脏代谢,最终随尿液排出体外,小部分由胃肠排除[1]。锶可沉积到骨密质及骨小梁中,由于骨小梁改建较骨密质频繁,其在骨松质的分布高于骨密质,锶在股骨、腰椎骨和髂嵴分布较多[2]–[3]。锶渗入骨组织有2种方式:一种是锶离子通过与钙离子交换渗入骨矿结晶的晶格表面,这种形式占据骨锶的大部分;另一小部分锶离子取代骨矿晶体羟磷灰石中的钙[3]。骨组织中锶的清除分为2个阶段:第一阶段是锶的初始清除期,快速清除结晶表面的锶;第二阶段是慢性清除期,缓慢清除渗入骨矿结晶中的锶[4]。血液中锶浓度正常范围是10.57~12.23 mg·L−1[5],过量锶会干扰钙的吸收与代谢,甚至替代骨组织中的钙,锶比钙更易从骨组织中游离,因此当人体内锶含量较高时,会引起骨质疏松、骨畸形[1],[6],肾功能不全的患者易引起体内锶的蓄积,形成高血锶导致不良后果[7]。

2. 锶的成骨效应和机制

2.1. 成骨细胞

研究[8]表明,锶能延长成骨细胞的存活时间,促进成骨细胞早期黏附、增殖、分化和基质的矿化。锶能通过整合素α2、整合素β1、黏着斑激酶及细胞外信号调节激酶(extracellular signal-regulated kinase,ERK)2信号传导途径,有效促进成骨细胞的早期黏附[9]。同时可以通过钙离子敏感受体(calcium-sensing receptor,CaSR)促进成骨细胞分化过程中骨桥蛋白(osteopontin,OPN)、碱性磷酸酶(alkaline phosphatase protein,ALP)、骨唾液酸糖蛋白(bonesialoprotein,BSP)、唾液蛋白、骨钙素(osteocalcin,OCN)表达的增加,促进成骨细胞分泌胶原蛋白。锶也可与基质结合,加速成骨细胞成熟及矿化[10]–[11]。此外,锶还可促进前成骨细胞增殖,提高细胞活性和成骨分化相关基因OPN、OCN及纤维黏连蛋白的表达,促进前成骨细胞向成骨细胞成熟分化,但是锶促进成骨细胞的增殖和分化具有显著的剂量依赖关系,超过最优浓度范围时,其促进作用下降,在一定阈值后甚至会出现毒性抑制作用[12]–[13]。而将适量锶掺杂在生物材料中,也能够促进前成骨细胞MC3T3-E1细胞的ALP活性、Ⅰ型胶原和矿物结节形成[14]。

2.2. 破骨细胞

研究[15]表明,锶可以促进破骨细胞凋亡并抑制其增殖、分化从而减少骨的吸收。Bonnelye等[11]研究表明,锶能够降低破骨细胞的功能活性,减缓破骨细胞成熟分化,可以通过破坏肌动蛋白封闭区来抑制破骨细胞的黏附和增殖能力。锶能够通过激活蛋白激酶C-βⅡ促进破骨细胞凋亡从而降低骨吸收,并呈现出剂量依赖性,抑制前破骨细胞的分化,从而影响骨的吸收[16]。抗酒石酸酸性磷酸酶(tartrate resistant acid phosphatase,TRACP)多存在于破骨细胞胞质中,为骨吸收的良好标志物,锶可过抑制TRACP5b基因的表达,降低TRACP活性,从而增强成骨细胞的代谢活性[17]–[18]。Caudrillier等[19]研究表明,锶通过介导钙离子受体作用,降低破骨细胞TRACP的活性。锶在破骨细胞分化早期能够通过抑制胞浆的核因子(nuclear factor,NF)-κB,激活蛋白1转移至细胞核从而抑制NF-κB受体激动剂配体(receptor activator of NF-κB ligand,RANKL)诱导的破骨细胞分化。

2.3. 干细胞

干细胞具有多向分化的能力,可分化成软骨细胞、成骨细胞、脂肪细胞等[20]。过氧化物酶增殖体活化受体(peroxisome proliferative activated receptor,PPAR)γ2和骨特异性转录因子(runt-related transcription factor,Runx)2是调控骨髓间充质干细胞向成骨分化还是成脂分化的关键基因,Runx2表达增加和PPARγ2表达降低,会使骨髓间充质干细胞向成骨分化;Runx2表达降低和PPARγ2表达升高,则会促进骨髓间充质干细胞向成脂分化[21]。研究[22]–[23]表明,锶可以抑制骨髓间充干细胞脂质沉积基因PPARγ2、CCAAT增强子结合蛋白α、脂肪细胞脂质结合蛋白2和脂蛋白脂肪酶表达,并促进成骨基因Runx2、ALP、BSP和OCN的表达,从而抑制骨髓间充质干细胞的增殖和向脂肪细胞分化,进而定向诱导骨髓间充质干细胞的成骨细胞分化。锶除了提高骨髓间充质干细胞促进成骨基因Runx2、ALP、OPN和OCN的表达之外,还促进了成骨分化,同时可促进血管生成生长因子和血小板源生长因子BB蛋白的分泌,招募内皮细胞,促进血管形成[23]–[24]。

2.4. 巨噬细胞

宿主免疫应答在移植中起着重要作用,巨噬细胞是宿主免疫应答的第一道线。巨噬细胞是调控宿主免疫和炎症反应的重要细胞,可以调控巨噬细胞在材料表面的黏附、激活、融合、凋亡等行为,以及材料在动物体内引发的宿主反应,所以巨噬细胞在成骨是组织工程中具有重要地位,因此有学者提出组织“骨免疫”的概念[25]。张文等[26]将锶掺杂到生物玻璃中,研究其骨免疫作用。巨噬细胞可分M1型和M2型,M2型巨噬细胞可以促进骨组织修复,M1型巨噬细胞生产促炎介质促进破骨分化分化,M2型巨噬细胞会分泌抗炎细胞因子和与伤口愈合有关,促进新骨形成[27]。掺杂锶的生物玻璃能促进巨噬细胞向M2型转换,减少促炎性细胞因子白细胞介素(interleukin,IL)-6、IL-1β和诱导型一氧化氮合酶的释放,增加抗炎基因IL-1受体拮抗剂和精氨酸酶的释放,促进间充质干细胞的成骨作用[28]。并且Zhu等[29]也证实,锶可以抑制巨噬细胞促炎因子肿瘤坏死因子-α、IL-6、IL-1β的表达,减少巨噬细胞向破骨细胞分化,减少破骨细胞数量,从而促进新骨形成,促进成骨。

此外,锶可促进成牙髓干细胞的增殖和成牙本质基因——牙本质磷蛋白、牙本质基质蛋白1和ALP的表达,从而促进牙髓干细胞增殖成牙本质,并促进其基质矿化[30]。锶还可以促进人乳牙脱落细胞增殖、分化,抑制成牙骨质细胞的增殖,促进成牙骨质细胞成牙骨质分化[31]–[32]。Qin等[33]将牙髓干细胞分别和羟磷灰石支架、磷酸钙支架、1%锶掺杂磷酸钙支架共培养后,检查细胞增殖和血管内皮生长因子、碱性成纤维细胞生长因子基因的表达,结果显示,加入锶掺杂的支架后,明显增加了乳牙干细胞的增殖和成血管基因血管内皮生长因子、碱性成纤维细胞生长因子的表达。

3. 锶作用相关信号通路

3.1. NF-κB受体激动剂/RANKL/骨保护素信号途径

NF-κB受体激动剂(receptor activator of NF-κB,RANK)/RANKL/骨保护素(osteoprotegerin,OPG)信号途径在破骨细胞的发生、活化、分化和凋亡起到重要的调控作用[34]。RANKL存在骨髓干细胞、成骨细胞、软骨细胞、及淋巴细胞中,具有促进破骨细胞成熟分化的作用;NF-κB是RANKL的受体,RANK与RANKL的结合能促进破骨细胞增殖、激活破骨细胞的破骨分化,进而增强骨吸收作用;OPG是由成骨细胞和干细胞分泌的一种分泌型糖蛋白,OPG可以竞争性的与RANK结合,进而抑制破骨细胞活性、降低破骨细胞分化和增加骨密度[35]。锶最先和细胞的钙敏感受体结合,然后诱导成骨细胞和间充质干细胞OPG mRNA的分泌增加,同时可降低RANKL mRNA浓度,OPG与RANKL的结合增多,抑制破骨前体细胞RANK与RANKL结合的作用,削弱RANK对破骨前体细胞的活化作用,进而抑制破骨细胞的活性,成熟分化,从而减少骨吸收[36]–[37],并且同时Zhu等[29]研究表明,锶能够减少巨噬细胞的RANK的表达,从而减少巨噬细胞向破骨细胞破骨分化的相关基因组织蛋白酶、基质金属蛋白酶9、TRACP、骨痂组织降钙素受体、活化T细胞核因子c1(nuclear factor of activated T cells cytoplasmic 1,NFATc1)和c-fos表达减少破骨细胞数量,进而减少骨组织的吸收。Stuss等[38]研究表明,骨质疏松患者每天口服雷奈酸锶2 g,6个月后血清的OPG和RANKL蛋白明显表达增加,骨密度也有所增加。

3.2. Wnt信号途径

Wnt信号通路贯穿着人类生命活动的一生,从胚胎发育到骨的发育和稳态过程中均扮演着重要角色[39]。β-连环蛋白在Wnt信号通路中占据重要作用,根据是否有连环蛋白基因的参与可以将Wnt分为经典的Wnt信号通路和非经典Wnt信号通路[40]。在经典途径中,锶可通过激活钙离子受体作用,促进Wnt3a和活化T细胞因子的表达,促进β-连环蛋白核转移以及相关成骨基因Runx2、ALP及Ⅰ型胶原酶的表达,同时抑制糖原合成激酶、经典的Wnt信号通路拮抗剂硬化蛋白表达,从而促进成骨细胞的增殖分化[40];在非经典途径中,锶可在不依赖β-连环蛋白情况下,通过Wnt5a蛋白-Ryk跨膜蛋白-Rho小G蛋白信号增加的表达,促进成骨细胞的增殖和分化[41]–[42]。Fromigué等[43]研究也表明,加入Wnt通路拮抗剂后,锶将不能诱导的成骨分化基因Runx2、ALP和Ⅰ型胶原的表达增加。

3.3. 大鼠肉瘤蛋白/丝裂原活化蛋白激酶与磷脂酰肌醇3-激酶/蛋白激酶B通路

大鼠肉瘤蛋白(rat sarcomaviral oncogene,Ras)/丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)与磷脂酰肌醇3-激酶(phosphoinositol 3-kinase,PI3K)/蛋白激酶B(protein kinase B,Akt)信号通路在调控细胞凋亡、增殖、分化、代谢及血管生成有重要作用,它们功能十分类似,并且可相互影响[44]。锶可激活成骨标志物Ras,Ras又是MAPK和Akt上游调控因子[44]。Ras与三磷酸鸟苷结合后被激活,使Raf与细胞膜结合并募集在此,进而使裂原活化蛋白激酶激酶(mitoge-activated protein kinase kinase,MEK)、MAPK依次被磷酸化激活,磷酸化的MAPK可通过活化转录因子和蛋白激酶调控细胞的各种生理过程[43]。锶可激活Ras,从而增强骨髓间充质干细胞丝裂原对MAPK的活化作用,通过增加ERK1/2和p38的磷酸化,激活下游转录因子Runx2的表达,促进间充质干细胞成骨分化[45]。Okita等[46]研究表明,锶可通过钙离子受体激活ERK1/2通路,定向诱导成软骨分化基因Ⅱ型胶原蛋白α1链mRNA的表达增加,促进去分化脂肪细胞成软骨分化。王仁峰[47]将PI3K特异性抑制剂抑制PI3K活性后发现,锶促进成骨分化作用明显被抑制,进一步证实了锶通过PI3K/Akt信号通路促进成骨。锶在低剂量可通过增加ERK1/2磷酸化和激活β-连环蛋白,来降低晚期糖基化终末产物的积累,增加骨骼的强度,减少骨折的发生;但高剂量的锶(1 000~3 000 µmol·L−1)却通过激活ERK1/2促进人脂肪干细胞凋亡,不利于成骨[24],[48]。此外,锶还能够通过组蛋白甲基转移酶激活ERK,进而促进成骨细胞分化[49]。

3.4. Smad通路

Smad蛋白是转化生长因子(transforming growth factor,TGF)-β下游的信号蛋白分子,将TGF-β信号从细胞外转导到细胞核内,在调节细胞增殖、分化、迁移、凋亡中具有重要作用,是TGF-β信号转导通路的始动因子[50]。骨形态发生蛋白(bone morphogenetic protein,BMP)是TGF-β1超家族的一员,包括BMP2、BMP4和BMP7等,BMP2/Smad通路是成骨细胞形成的重要通路,BMP2是促进骨形成和诱导成骨细胞分化最重要的细胞外信号分子之一。吕辉珍等[51]研究表明,锶可通过上调TGF-β1表达,进而促进磷酸化Smad2、Runx2和ALP活性表达,促进钙结节形成,从而促进骨髓间充质干细胞向成骨细胞分化。TGF-β1的拮抗剂可抑制锶对Runx2、ALP的上调,减少矿化结节的生长。李正等[52]发现,锶可浓度依赖性地增加ALP活性,明显促进钙结节的表达。这表明,BMP/Smad通路参与了锶对骨髓间充质干细胞成骨分化的促进调节过程,BMP-7阻断剂可抑制锶诱导的BMP-7表达,降低ALP活性及减少钙结节的矿化,由此可见,BMP-2/Smad通路参与了锶对骨髓间充质干细胞成骨分化的促进调节过程。然而Zhang等[53]发现,Sr2+会与外源人重组骨形态发生蛋白(recombinant human bone morphogenetic protein,rhBMP)-2快速结合,形成Sr-rhBMP-2复合体,使rhBMP-2发生β折叠增加,从而抑制Smad1/5/8信号转导通路,进而抑制rhBMP-2诱导的ALP活性和下调骨相关蛋白(ALP、Ⅰ型胶原,骨钙素和Runx2)在mRNA和蛋白质水平的表达,并且在体内实验也证实了,含Sr-rhBMP-2的明胶海绵比仅含rhBMP-2的明胶海绵成骨效果差。这提示,锶可以通过Smad信号通路促进成骨分化,但是锶联合外源性的生长因子一起应用时,应当注意其含量,避免高浓度锶离子可能造成的不良影响。

3.5. Hedgehog/胶质瘤相关癌基因蛋白1通路

Hedgehog是一种分节极性基因,因突变的果蝇胚胎呈多毛团状,酷似受惊刺猬而得名。胶质瘤相关癌基因蛋白(glioma oncogene protein,Gli)1是编码一个锌指蛋白Kruppel家族的成员。Hedgehog/Gli1通路在脊椎动物骨骼系统的形成和发育中具有重要的调节作用[54]。胡洁芬等[55]实验表明,锶能够上调细胞内的Gli1蛋白,从而对ALP活性及钙化结节形成具有促进作用,Hedgehog受体拮抗剂能拮抗锶对Gli1蛋白表达的上调作用,Gli1小干扰RNA可下调Runx表达,降低ALP活性,减少钙结节形成,抑制骨髓间充质干细胞向成骨分化的过程。由此可见,Hedgehog/Gli通路可能是锶促进成骨分化的潜在机制。

3.6. 成纤维细胞生长因子受体通路

锶通过钙敏感受体介导除了明显增加磷脂酶、嵌膜衔接蛋白、丝氨酸/苏氨酸蛋白激酶、ERK和丝分裂原激活蛋白激酶活化外,锶还会通过钙敏感受体激活成纤维细胞生长因子受体(fibroblast growth factor receptor,FGFR),进而促进成骨细胞的增殖,而FGFR特异性抑制剂能够阻断锶对成骨细胞的生长作用,并且FGFR的其他阳离子如钙、铝,同样可以促进FGFR介导成骨细胞的增殖, FGFR可能是锶促进成骨细胞增殖的通路之一[56]。

3.7. NFATc1通路

NFATc1信号通路可以调控骨的形成、成骨分化和改建[57]。锶可以激活钙依赖磷酸酶促进NFATc1核转移的增加,通过NFATc1/Wnt信号通路促进成骨细胞的表型标记物Runx2、ALP、Ⅰ型胶原表达的增加,促进成骨细胞增殖、分化,抑制细胞凋亡[58]–[59]。

3.8. 其他

此外,锶促进成骨的机制还跟前列腺素、IL-1β、肿瘤坏死因子-α、一氧化氮、血清胰岛素样生长因子-1等有关。锶可以诱导环氧化酶-2、前列腺素和一氧化氮表达增加,促进干细胞分化成为成骨细胞[60]–[61]。口服雷奈酸锶6个月后,血清中的胰岛素样生长因子-1表达明显增加[62]。服用雷奈酸锶后,可降低发炎的关节炎症因子IL-1β、TNFα的释放,减轻炎症反应[63]。

4. 展望

锶在细胞及分子水平的作用机制及作用效果正被广泛研究,但其作用机制十分复杂,目前尚不明确。在细胞水平上:锶可促进干细胞成骨分化,促进成骨细胞的复制及分化,抑制破骨细胞破骨分化进而影响骨的代谢;在分子水平上:锶可通RANK/RANKL/OPG信号通路Wnt信号通及Smad信号通路等多种信号通路影响骨的代谢。锶在医学中有着应用的广泛,它可治疗骨质疏松,降低骨质疏松患者骨折的风险,锶骨替代材料在组织工程的应用也越来越被认可。然而锶在体内各种通路是否有联系、如何联系、各种细胞间的相关作用、锶骨替代材料如何同时实现成骨成血管化,以及支架材料是否能促进骨质疏松患者的局部成骨等有关问题仍需进一步研究。

Footnotes

利益冲突声明:作者声明本文无利益冲突。

References

1.马 家晴, 于 萌, 张 海松. 锶对骨矿代谢的研究进展[J] 医学研究与教育. 2015;32(2):82–86. [Google Scholar]; Ma JQ, Yu M, Zhang HS. Progress of Strontium on bone mineral metabolism[J] Med Res Educ. 2015;32(2):82–86. [Google Scholar]

2.Dahl SG, Allain P, Marie PJ, et al. Incorporation and distribution of strontium in bone[J] Bone. 2001;28(4):446–453. doi: 10.1016/s8756-3282(01)00419-7. [DOI] [PubMed] [Google Scholar]

3.Wu Y, Adeeb SM, Duke MJ, et al. Compositional and material properties of rat bone after bisphosphonate and/or Strontium ranelate drug treatment[J] J Pharm Pharm Sci. 2013;16(1):52–64. doi: 10.18433/j3c59h. [DOI] [PubMed] [Google Scholar]

4.胡 细连, 谢 海宝. 雷尼酸锶治疗骨质疏松症的研究进展[J] 中国骨质疏松杂志. 2006;12(5):515–517, 495. [Google Scholar]; Hu XL, Xie HB. Research progress of strontium ranelate in the treatment of osteoporosis[J] Chin J Osteoporos. 2006;12(5):515–517, 495. [Google Scholar]

5.Piette M, Desmet B, Dams R. Determination of strontium in human whole blood by ICP-AES[J] Sci Total Environ. 1994;141(1/2/3):269–273. doi: 10.1016/0048-9697(94)90033-7. [DOI] [PubMed] [Google Scholar]

6.Krachler M, Wirnsberger G, Irgolic KJ. Trace element status of hemodialyzed patients[J] Biol Trace Elem Res. 1997;58(3):209–221. doi: 10.1007/BF02917472. [DOI] [PubMed] [Google Scholar]

7.陈 兵, 赵 婷婷, 王 海萍, et al. 血液透析患者外周血铅、镉、锶、铝水平研究[J] 中华肾脏病杂志. 2013;29(2):152–153. [Google Scholar]; Chen B, Zhao TT, Wang HP, et al. Study on the levels of lead, cadmium, strontium and aluminum in peripheral blood of hemodialysis patients[J] Chin J Nephrol. 2013;29(2):152–153. [Google Scholar]

8.Brennan TC, Rybchyn MS, Green W, et al. Osteoblasts play key roles in the mechanisms of action of strontium ranelate[J] Br J Pharmacol. 2009;157(7):1291–1300. doi: 10.1111/j.1476-5381.2009.00305.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

9.唐 炬, 张 震祥, 李 洪伟. 锶离子二氧化钛涂层对成骨细胞的黏附作用[J] 江苏医药. 2017;43(15):1066–1071. [Google Scholar]; Tang J, Zhang ZX, Li HW. Adhesion effect of Sr-incorporated TiO2 coating on osteoblast-like cells[J] Jiangsu Med J. 2017;43(15):1066–1071. [Google Scholar]

10.Barbara A, Delannoy P, Denis BG, et al. Normal matrix mineralization induced by strontium ranelate in MC3T3-E1 osteogenic cells[J] Metabolism. 2004;53(4):532–537. doi: 10.1016/j.metabol.2003.10.022. [DOI] [PubMed] [Google Scholar]

11.Bonnelye E, Chabadel A, Saltel F, et al. Dual effect of strontium ranelate: stimulation of osteoblast differentiation and inhibition of osteoclast formation and resorption in vitro[J] Bone. 2008;42(1):129–138. doi: 10.1016/j.bone.2007.08.043. [DOI] [PubMed] [Google Scholar]

12.Almeida MM, Nani EP, Teixeira LN, et al. Strontium ranelate increases osteoblast activity[J] Tissue Cell. 2016;48(3):183–188. doi: 10.1016/j.tice.2016.03.009. [DOI] [PubMed] [Google Scholar]

13.Liu J, Rawlinson SC, Hill RG, et al. Strontium-substituted bioactive glasses in vitro osteogenic and antibacterial effects[J] Dent Mater. 2016;32(3):412–422. doi: 10.1016/j.dental.2015.12.013. [DOI] [PubMed] [Google Scholar]

14.Singh SS, Roy A, Lee B, et al. Murine osteoblastic and osteoclastic differentiation on strontium releasing hydroxyapatite forming cements[J] Mater Sci Eng C Mater Biol Appl. 2016;63:429–438. doi: 10.1016/j.msec.2016.02.059. [DOI] [PubMed] [Google Scholar]

15.李 忠海, 韩 丽伟, 赵 彦涛, et al. 不同浓度锶对MC3T3-E1细胞增殖、ALP活性及成骨分化的影响[J] 中国骨与关节杂志. 2016;5(3):221–225. [Google Scholar]; Li ZH, Han LW, Zhao YT, et al. Effects of strontium on the proliferation, ALP activity and the differentiation of MC3T3 cells[J] Chin J Bone Joint. 2016;5(3):221–225. [Google Scholar]

16.Marie PJ. Strontium ranelate in osteoporosis and beyond: identifying molecular targets in bone cell biology[J] Mol Interv. 2010;10(5):305–312. doi: 10.1124/mi.10.5.7. [DOI] [PubMed] [Google Scholar]

17.Persson P, Takagi Y, Björnsson BT. Tartrate resistant acid phosphatase as a marker for scale resorption in rainbow trout, oncorhynchus mykiss: effects of estradiol-17β treatment and refeeding[J] Fish Physiol Biochem. 1995;14(4):329–339. doi: 10.1007/BF00004071. [DOI] [PubMed] [Google Scholar]

18.Sorbera LA, Castañer J, Leeson PA, et al. Strontium ranelate[J] Drug Future. 2003;28(4):328–330. [Google Scholar]

19.Caudrillier A, Hurtel-Lemaire AS, Wattel A, et al. Strontium ranelate decreases receptor activator of nuclear factor-ΚB ligand-induced osteoclastic differentiation in vitro: involvement of the calcium-sensing receptor[J] Mol Pharmacol. 2010;78(4):569–576. doi: 10.1124/mol.109.063347. [DOI] [PubMed] [Google Scholar]

20.Sell S. Stem cell origin of cancer and differentiation therapy[J] Crit Rev Oncol Hematol. 2004;51(1):1–28. doi: 10.1016/j.critrevonc.2004.04.007. [DOI] [PubMed] [Google Scholar]

21.Akune T, Ohba S, Kamekura S, et al. PPARγ insufficiency enhances osteogenesis through osteoblast formation from bone marrow progenitors[J] J Clin Invest. 2004;113(6):846–855. doi: 10.1172/JCI19900. [DOI] [PMC free article] [PubMed] [Google Scholar]

22.Fournier C, Perrier A, Thomas M, et al. Reduction by strontium of the bone marrow adiposity in mice and repression of the adipogenic commitment of multipotent C3H10T1/2 cells[J] Bone. 2012;50(2):499–509. doi: 10.1016/j.bone.2011.07.038. [DOI] [PubMed] [Google Scholar]

23.Li Y, Li J, Zhu S, et al. Effects of strontium on proliferation and differentiation of rat bone marrow mesenchymal stem cells[J] Biochem Biophys Res Commun. 2012;418(4):725–730. doi: 10.1016/j.bbrc.2012.01.088. [DOI] [PubMed] [Google Scholar]

24.Aimaiti A, Maimaitiyiming A, Boyong X, et al. Low-dose strontium stimulates osteogenesis but high-dose doses cause apoptosis in human adipose-derived stem cells via regulation of the ERK1/2 signaling pathway[J] Stem Cell Res Ther. 2017;8(1):282. doi: 10.1186/s13287-017-0726-8. [DOI] [PMC free article] [PubMed] [Google Scholar]

25.Zhang W, Cao H, Zhang X, et al. A strontium-incorporated nanoporous titanium implant surface for rapid osseointegration[J] Nanoscale. 2016;8(9):5291–5301. doi: 10.1039/c5nr08580b. [DOI] [PubMed] [Google Scholar]

26.张 文, 黄 德球, 郭 周义, et al. 掺锶生物活性玻璃通过调控巨噬细胞极化促进成骨[J] 激光生物学报. 2018;27(3):232–239. [Google Scholar]; Zhang W, Huang DQ, Guo ZY, et al. Enhanced osteogenesis of strontium-substituted bioactive glasses through regulation of macrophage polarization[J] Acta Laser Biol Sin. 2018;27(3):232–239. [Google Scholar]

27.李 相仕, 王 金龙, 尹 玉姬, et al. 组织工程相关生物材料与巨噬细胞相互作用研究进展[J] 生物医学工程学杂志. 2008;25(2):487–490. [PubMed] [Google Scholar]; Li XS, Wang JL, Yin YJ, et al. Advances in interaction of macrophages with tissue engineering related biomaterials[J] J Biomed Eng. 2008;25(2):487–490. [PubMed] [Google Scholar]

28.Zhang W, Zhao F, Huang D, et al. Strontium-substituted submicrometer bioactive glasses modulate macrophage responses for improved bone regeneration[J] ACS Appl Mater Interfaces. 2016;8(45):30747–30758. doi: 10.1021/acsami.6b10378. [DOI] [PubMed] [Google Scholar]

29.Zhu S, Hu X, Tao Y, et al. Strontium inhibits titanium particle-induced osteoclast activation and chronic inflammation via suppression of NF-κB pathway[J] Sci Rep. 2016;6:36251. doi: 10.1038/srep36251. [DOI] [PMC free article] [PubMed] [Google Scholar]

30.Su WT, Chou WL, Chou CM. Osteoblastic differentiation of stem cells from human exfoliated deciduous teeth induced by thermosensitive hydrogels with strontium phosphate[J] Mater Sci Eng C Mater Biol Appl. 2015;52:46–53. doi: 10.1016/j.msec.2015.03.025. [DOI] [PubMed] [Google Scholar]

31.Huang M, Hill RG, Rawlinson SC. Strontium (Sr) elicits odontogenic differentiation of human dental pulp stem cells (hDPSCs): a therapeutic role for Sr in dentine repair[J] Acta Biomater. 2016;38:201–211. doi: 10.1016/j.actbio.2016.04.037. [DOI] [PubMed] [Google Scholar]

32.Bao X, Liu X, Zhang Y, et al. Strontium promotes cementoblasts differentiation through inhibiting sclerostin expression in vitro[J] Biomed Res Int. 2014;2014:487535. doi: 10.1155/2014/487535. [DOI] [PMC free article] [PubMed] [Google Scholar]

33.Qin H, Yang Z, Li L, et al. A promising scaffold with excellent cytocompatibility and pro-angiogenesis action for dental tissue engineering: strontium-doped calcium polyphosphate[J] Dent Mater J. 2016;35(2):241–249. doi: 10.4012/dmj.2015-272. [DOI] [PubMed] [Google Scholar]

34.元 宇, 郭 健民, 邹 军. OPG/RANKL/RANK信号通路在运动与骨免疫学中的研究进展[J] 中国骨质疏松杂志. 2015;21(8):1005–1010. [Google Scholar]; Yuan Y, Guo JM, Zou J. Research progress of OPG/RANKL/RANK signal pathway in exercise and osteoimmunology[J] Chin J Osteopor. 2015;21(8):1005–1010. [Google Scholar]

35.Ominsky MS, Li X, Asuncion FJ, et al. RANKL inhibition with osteoprotegerin increases bone strength by improving cortical and trabecular bone architecture in ovariectomized rats[J] J Bone Miner Res. 2008;23(5):672–682. doi: 10.1359/jbmr.080109. [DOI] [PubMed] [Google Scholar]

36.Atkins GJ, Welldon KJ, Halbout P, et al. Strontium ranelate treatment of human primary osteoblasts promotes an osteocyte-like phenotype while eliciting an osteoprotegerin response[J] Osteoporos Int. 2009;20(4):653–664. doi: 10.1007/s00198-008-0728-6. [DOI] [PubMed] [Google Scholar]

37.Peng S, Liu XS, Huang S, et al. The cross-talk between osteoclasts and osteoblasts in response to strontium treatment: involvement of osteoprotegerin[J] Bone. 2011;49(6):1290–1298. doi: 10.1016/j.bone.2011.08.031. [DOI] [PubMed] [Google Scholar]

38.Stuss M, Sewerynek E, Król I, et al. Assessment of OPG, RANKL, bone turnover markers serum levels and BMD after treatment with strontium ranelate and ibandronate in patients with postmenopausal osteoporosis[J] Endokrynol Pol. 2016;67(2):174–184. doi: 10.5603/EP.a2016.0014. [DOI] [PubMed] [Google Scholar]

39.James AW. Review of signaling pathways governing MSC osteogenic and adipogenic differentiation[J] Scientifica (Cairo) 2013;2013:684736. doi: 10.1155/2013/684736. [DOI] [PMC free article] [PubMed] [Google Scholar]

40.Rybchyn MS, Slater M, Conigrave AD, et al. An Akt-dependent increase in canonical Wnt signaling and a decrease in sclerostin protein levels are involved in strontium ranelate-induced osteogenic effects in human osteoblasts[J] J Biol Chem. 2011;286(27):23771–23779. doi: 10.1074/jbc.M111.251116. [DOI] [PMC free article] [PubMed] [Google Scholar]

41.Saidak Z, Marie PJ. Strontium signaling: molecular mechanisms and therapeutic implications in osteoporosis[J] Pharmacol Ther. 2012;136(2):216–226. doi: 10.1016/j.pharmthera.2012.07.009. [DOI] [PubMed] [Google Scholar]

42.李 蕾, 雷 云坤, 孟 增东. 锶的成骨效应及其在骨科中应用的研究进展[J] 中国修复重建外科杂志. 2012;26(11):1398–1402. [PubMed] [Google Scholar]; Li L, Lei YK, Meng ZD. Progress of osteogenic effect of strontium and its application in orthopaedics[J] Chin J Reparat Reconstr Surg. 2012;26(11):1398–1402. [PubMed] [Google Scholar]

43.Fromigué O, Haÿ E, Barbara A, et al. Calcium sensing receptor-dependent and receptor-independent activation of osteoblast replication and survival by strontium ranelate[J] J Cell Mol Med. 2009;13(8B):2189–2199. doi: 10.1111/j.1582-4934.2008.00673.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

44.袁 向飞, 陆 敏. Ras/MAPK与PI3K/Akt信号转导通路及其相互作用[J] 国际检验医学杂志. 2006;27(3):261–263. [Google Scholar]; Yuan XF, Lu M. Ras/MAPK and PI3K/Akt signal transduction pathways and their interaction[J] Int J Lab Med. 2006;27(3):261–263. [Google Scholar]

45.Peng S, Zhou G, Luk KD, et al. Strontium promotes osteogenic differentiation of mesenchymal stem cells through the Ras/MAPK signaling pathway[J] Cell Physiol Biochem. 2009;23(1/2/3):165–174. doi: 10.1159/000204105. [DOI] [PubMed] [Google Scholar]

46.Okita N, Honda Y, Kishimoto N, et al. Supplementation of strontium to a chondrogenic medium promotes chondrogenic differentiation of human dedifferentiated fat cells[J] Tissue Eng Part A. 2015;21(9/10):1695–1704. doi: 10.1089/ten.TEA.2014.0282. [DOI] [PubMed] [Google Scholar]

47.王 仁峰. microRNA-21参与锶促细胞成骨分化及外泌体提取方法改良[D] 天津: 天津医科大学; 2016. [Google Scholar]; Wang RF. microRNA-21 is involved in the strontium induced osteogenic differentiation of cells and improvement of exosome extraction[D] Tianjin: Tianjin Medical University; 2016. [Google Scholar]

48.Fernández JM, Molinuevo MS, Sedlinsky C, et al. Strontium ranelate prevents the deleterious action of advanced glycation endproducts on osteoblastic cells via calcium channel activation[J] Eur J Pharmacol. 2013;706(1/2/3):41–47. doi: 10.1016/j.ejphar.2013.02.042. [DOI] [PubMed] [Google Scholar]

49.Jia X, Long Q, Miron RJ, et al. Setd2 is associated with strontium-induced bone regeneration[J] Acta Biomater. 2017;53:495–505. doi: 10.1016/j.actbio.2017.02.025. [DOI] [PubMed] [Google Scholar]

50.陈 兵, 易 斌, 鲁 开智. Smad蛋白家族调控细胞分化的研究进展[J] 医学研究生学报. 2013;26(5):544–547. [Google Scholar]; Chen B, Yi B, Lu KZ. Advances in researches on Smad proteins in cell differentiation[J] J Med Postgra. 2013;26(5):544–547. [Google Scholar]

51.吕 辉珍, 黄 晓丹, 靳 思思, et al. 雷奈酸锶通过骨形态发生蛋白-2/Smad通路促进骨髓间充质干细胞成骨分化[J] 南方医科大学学报. 2013;33(3):376–381. [PubMed] [Google Scholar]; Lü HZ, Huang XD, Jin SS, et al. Strontium ranelate promotes osteogenic differentiation of rat bone mesenchymal stem cells through bone morphogenetic protein-2/Smad signaling pathway[J] J South Med Univ. 2013;33(3):376–381. [PubMed] [Google Scholar]

52.李 正, 王 瑒, 王 小娜, et al. 骨形态发生蛋白-7在雷奈酸锶促进骨髓间充质干细胞成骨分化过程中的作用[J] 南方医科大学学报. 2011;31(11):1949–1953. [Google Scholar]; Li Z, Wang Y, Wang XN, et al. Strontium ranelate promotes osteogenic differentiation of rat bone marrow mesenchymal stem cells by increasing bone morphogenetic protein-7 expression[J] J South Med Univ. 2011;31(11):1949–1953. [PubMed] [Google Scholar]

53.Zhang W, Tian Y, He H, et al. Strontium attenuates rhBMP-2-induced osteogenic differentiation via formation of Sr-rhBMP-2 complex and suppression of Smad-dependent signaling pathway[J] Acta Biomater. 2016;33:290–300. doi: 10.1016/j.actbio.2016.01.042. [DOI] [PubMed] [Google Scholar]

54.Pan A, Chang L, Nguyen A, et al. A review of hedgehog signaling in cranial bone development[J] Front Physiol. 2013;4:61. doi: 10.3389/fphys.2013.00061. [DOI] [PMC free article] [PubMed] [Google Scholar]

55.胡 洁芬, 廖 静秋, 张 伟杰, et al. Hedgehog/Gli1通路在雷奈酸锶促进骨髓间充质干细胞成骨分化过程中的作用[J] 中国病理生理杂志. 2015;31(2):234–238. [Google Scholar]; Hu JF, Liao JQ, Zhang WJ, et al. Strontium ranelate promotes osteogenic differentiation of rat bone mesenchymal stem cells through Hedgehog/Gli1 signaling pathway[J] Chin J Pathophysiol. 2015;31(2):234–238. [Google Scholar]

56.Caverzasio J, Thouverey C. Activation of FGF receptors is a new mechanism by which strontium ranelate induces osteoblastic cell growth[J] Cell Physiol Biochem. 2011;27(3/4):243–250. doi: 10.1159/000327950. [DOI] [PubMed] [Google Scholar]

57.Kim JH, Kim N. Regulation of NFATc1 in osteoclast differentiation[J] J Bone Metab. 2014;21(4):233–241. doi: 10.11005/jbm.2014.21.4.233. [DOI] [PMC free article] [PubMed] [Google Scholar]

58.Saidak Z, Haÿ E, Marty C, et al. Strontium ranelate rebalances bone marrow adipogenesis and osteoblastogenesis in senescent osteopenic mice through NFATc/Maf and Wnt signaling[J] Aging Cell. 2012;11(3):467–474. doi: 10.1111/j.1474-9726.2012.00804.x. [DOI] [PubMed] [Google Scholar]

59.Fromigué O, Haÿ E, Barbara A, et al. Essential role of nuclear factor of activated T cells (NFAT)-mediated Wnt signaling in osteoblast differentiation induced by strontium ranelate[J] J Biol Chem. 2010;285(33):25251–25258. doi: 10.1074/jbc.M110.110502. [DOI] [PMC free article] [PubMed] [Google Scholar]

60.Choudhary S, Halbout P, Alander C, et al. Strontium ranelate promotes osteoblastic differentiation and mineralization of murine bone marrow stromal cells: involvement of prostaglandins[J] J Bone Miner Res. 2007;22(7):1002–1010. doi: 10.1359/jbmr.070321. [DOI] [PubMed] [Google Scholar]

61.Tan S, Zhang B, Zhu X, et al. Deregulation of bone forming cells in bone diseases and anabolic effects of strontium-containing agents and biomaterials[J] Biomed Res Int. 2014;2014:814057. doi: 10.1155/2014/814057. [DOI] [PMC free article] [PubMed] [Google Scholar]

62.Gulhan I, Bilgili S, Gunaydin R, et al. The effect of strontium ranelate on serum insulin like growth factor-1 and leptin levels in osteoporotic post-menopausal women: a prospective study[J] Arch Gynecol Obstet. 2008;278(5):437–441. doi: 10.1007/s00404-008-0611-x. [DOI] [PubMed] [Google Scholar]

63.de Melo Nunes R, Martins MR, da Silva Junior FS, et al. Strontium ranelate analgesia in arthritis models is associated to decreased cytokine release and opioid-dependent mechanisms[J] Inflamm Res. 2015;64(10):781–787. doi: 10.1007/s00011-015-0860-7. [DOI] [PubMed] [Google Scholar]